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probability for rotational excitation upon collision be­
tween a helium atom and a hydrogen molecule is com­
puted using the calculated interaction energy. 
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I. INTRODUCTION 

WH E N a diatomic molecule collides with another 
particle, atom, or molecule, inelastic as well as 

elastic scattering may occur; the diatomic molecule 
may undergo changes in any of the quantum numbers 
describing the state of its internal coordinates. If ini­
tially the diatomic molecule is in its ground electronic, 
vibrational, and rotational state, and we confine our­
selves to incident kinetic energies measured in the 
center-of-mass coordinate system that are below the 
energy necessary to excite the molecule to its first 
excited vibrational state, then the only energetically 
possible inelastic process is change in rotational quan­
tum number. Under these conditions, fairly low-incident 
energies, and no other competing inelastic process, it is 
possible to compute the inelastic scattering cross section 
from a rigorous quantum mechanical formalism and 
only two approximations. The first approximation is to 
treat the problem in the Born-Oppenheimer or adia-
batic approximation where the net effect of the electrons 
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is to provide a potential energy function of r, the dis­
tance measured along a line from the incoming particle 
to the center of mass of the diatomic molecule, and y, 
the angle between this line and the line joining the two 
nuclei of the molecule. This approximation is surely 
justified for low-incident velocities where the electrons 
have plenty of time to readjust themselves as the col­
liding partners move towards their rendezvous. The 
second necessary approximation is to use the method of 
distorted waves1,2 to solve the coupled differential 
equations which result from the Schrodinger equation 
of the problem. For low-incident energies, it turns out 
that the distorted-wave approximation is quite good. 
The low-incident kinetic energies also make feasible the 
use of a partial wave analysis of the problem. While this 
is not an approximation, its use reduces the computa­
tions to solving ordinary differential equations, an easy 
task for a digital computer. 

In the present work, the general methods described 
above are used to calculate the inelastic cross section 
for rotational excitation of a hydrogen molecule from 
the j=0 to the j=2 state when it collides with either 

1 T. Wu and T. Ohmura, Quantum Theory of Scattering (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1962), p. 219. 

2 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions 
(Oxford University Press, New York, 1949), Chaps. VI and 
VIII. 
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The formalism developed by Arthurs and Dalgarno has been used in the distorted wave approximation to 
calculate the inelastic scattering cross section for rotational excitation from the j=0 to the j—2 rotational 
state in collisions between a helium atom and a hydrogen molecule or two hydrogen molecules. All necessary 
computations were done with a digital computer, thus, allowing the Arthurs-Dalgarno formalism to be 
applied with no added approximations. The interaction energy between He and H2 obtained in the preceding 
paper was used for the He-H2 calculation while the interaction energy given by Takayanagi was used for 
the H2-H2 problem. Values for the total inelastic cross sections are given as well as graphs for the He—H2 
differential scattering cross section. Incident kinetic energies up to only 0.25 eV in the center-of-mass system 
were considered; for these low energies, vibrational or electronic excitation is impossible so that change in 
rotational quantum number is the only inelastic process possible. The results obtained for the H2—H2 cross 
section do not agree with the rate of de-excitation from the j—2 rotational level in H2 gas as measured by 
dispersion experiments with ultrasonic waves. The disagreement may be due to an incorrect H2—H2 inter­
action potential or failure to consider all important de-excitation mechanisms. 
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FIG. 1. Inelastic scattering of He by H2. Potential of Eq. (5.2). 
Total inelastic cross section for the j = Q to j=2 transition vs 
incident kinetic energy. 

a helium atom or another hydrogen molecule. The 
hydrogen molecule is treated as if it were a rigid rotor 
so that the theory developed by Arthurs and Dalgarno3 

may be used. This theory is based upon an earlier work 
on nuclear scattering theory given by Blatt and 
Biedenharn,4 and it describes rigorously the scattering, 
both elastic and inelastic, of a particle from a rigid rotor. 
In treating rotational excitation from the state j to the 
state f, considerable simplification results if we do not 
distinguish between initial and final states of the mag­
netic quantum number m3\ This simplification is made in 
the Arthurs-Dalgarno treatment and, as a result, all 
cross sections calculated in this paper are for processes 
which do not distinguish between initial and final Te­
states. For a formalism which includes mj transitions, 
as well as for an alternative derivation of the Arthurs-
Dalgarno formalism, one should see the paper by 
Gioumousis and Curtiss.5 

The problem of rotational transition upon collision 
between two hydrogen molecules has been treated by 

3 A. M. Arthurs and A. Dalgarno, Proc. Roy. Soc. (London) 
A256, 540 (1960). 

4 J. M. Blatt and L. C. Biedenharn, Phys. Rev. 24, 258 (1952). 
5 G. Gioumousis and C. F. Curtiss, J. Math. Phys. 2, 96 (1961). 

Takayanagi6 and a few other authors. These treatments, 
while they profess to be distorted wave treatments, 
suffer from the fact that many other approximations 
were introduced in order to make computation easier. 

II. ARTHURS-DALGARNO FORMALISM FOR 
SCATTERING FROM A RIGID ROTOR 

The Arthurs-Dalgarno paper3 forms the basis for the 
scattering computations performed in this research. We 
list here, for reference, only the equations which re­
quire computational consideration. To compute cross 
sections, the ordinary differential equations 

[—+k,r* —y(j>l>;j\V\j'l';J)j 
W/d2 

i2f\dr2 

XwyV
J*(r) = 0 (2.1) 

must be solved subject to the boundary conditions 

r - > 0 : Wj>i>J*(r) = 0, (2.2a) 

r-><*>: wj>l>
J'l(r) = sm(kwr-%lfT+rij'i>J>). (2.2b) 

When this is accomplished, the scattering S matrix7 is 
given by 

S'(jl;jl) = exp£2ir,ji'q, (2.3a) 

X e x p p f e / H - ^ ' ) ] , (2.3b) 

for J9^jf or tel'. 
Here, 

W = 
2M r 

fPkjj' J 0 
dru)j'i'Jjl(r) 

X 0 T ; / | F | i / ; / K ^ ( r ) . (2.4) 

The total and differential scattering cross section 
may be obtained from the S matrix by use of the 
algebra of Clebsch-Gordan and Racah coefficients.8 

I t should be noted that there is an error in the definition 
of fij>i>Jjl in the Arthurs-Dalgarno paper. Our Eq. (2.4) 
differs from their Eq. (37) by a factor 2^/%2kjy. 
Equation (2.4) is correct. 

III. EXPANSION OF THE POTENTIAL V(r,y) 

The interaction potential V(r,y) will be specified by 
giving the functions v^ (r) in its expansion in a series of 
Legendre functions. 

F ( r , 7 ) = E *vWPM(cosT). 
M=0 

(3.1) 

6 K. Takayanagi, Sci. Rept. Saitama Univ. A3, 65 (1959); K. 
Takayanagi, Proc. Phys. Soc. (London) A70, 348 (1957). 

7 Reference 1, p. 412. 
8 L . C. Biedenharn, J. M. Blatt, and M. E. Rose, Rev. Mod. 

Phys. 24, 249 (1952). 
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The matrix elements (j"l" )J\V\ j'V; / ) can then be 
expressed 

(j"l"iJ\V\j'l'iJ)=£ Mj"l"; j'V;/»), (3.2) 

where 

U<J"i"; i'v; -0=<J"i"; /1 i\.(co*y) I j'V; J), (s.s) 

IV. COMPUTER PROGRAMMING METHODS 

A package of programs was prepared for the IBM 709 
digital computer to do the scattering computations in 
the distorted-wave approximation. The subprograms 
comprising the package were largely Fortran coded, 
although a few were done in FAP in order to save time 
and facilitate certain operations. The package considers 
all parameters to be center-of-mass system values and 
uses electron volts as the energy unit and angstroms as 
the unit of length. The potential V(r,y) is specified by 
giving the functions z>M(r) in its expansion in Plx(cosy)i 

Eq. (3.1). A subprogram is supplied which tells the 
maximum value of n occurring in the expansion and 
evaluates the different v^(r) functions. Although as 
many terms as desired may thus be taken, only a vo(r) 
and a z^M term were actually used in the calculations. 
The differential equations (2.1) were numerically in­
tegrated using the method of Runge-Kutta and Gill.9 

At the end of the numerical integration, the function 
was specified by a table of values in core storage. Each 
numerical integration was started by picking a value of 
r close enough to zero so that the interaction energy was 
very much greater than the incident kinetic energy. For 
this value of r, the value of the function was set equal 
to zero and the value of the slope was set equal to some 
arbitrary value. The initial value of the slope is unim­
portant since the entire function is normalized to con­
form to Eq. (2.2b) at the end of the process. The initial 
value of r is made small enough so that by decreasing 
it further we make no substantial change in the asymp­
totic behavior of the function. With these initial values 
of the function and its slope, the numerical integration 
process begins to compute the values of the function for 
larger values of r. A small integration interval is used 
at first, since in this region the potential varies quite 
rapidly and the solutions must be known accurately. 
As r passes the point where the potential has almost 
completely died out, the integration interval is increased 
to speed up the process. In this region the function is 
oscillatory and its phase shift is calculated every time 
it crosses the r axis by comparison with the correspond­
ing values of the spherical Bessel and Neumann func­
tions. When two successive evaluations of the phase 
shift agree to within a predetermined parameter, the 
numerical integration stops. This parameter is usually 
set equal to 0.0002 rad but was never larger than 0.002 
rad. The function is now normalized to have the asymp-

9 A. Ralston and H. S. Wilf, Mathematical Methods for Digital 
Computers (John Wiley & Sons, Inc., New York, 1960), p. 110. 

0.050 

0.045 

0.040 

0.035 

CVI 

^ 0.030 
1t-
~o 

j , 0-025 

0.020 

0.015 

0.010 

0.005 

0 

-

-

_ 

- i i — T j ^ 

E,NC = o.08 e v / 
f / 

1 ElNC— / 
J 0 . 0 7 1 2 4 / 

/ / E.NC = 0J)6^^""~ 

^ ^ E | N C = 0 . 0 5 _ 

, u _ ^ — t — n — r ~ \ i i- i i i 
0 30 60 90 120 150 180 

0(C.M.) (DEGREES) 

FIG. 2. Inelastic scattering of He by H2. Potential of Eq. (5.2). 
Differential scattering cross section in the center-of-mass system 
for the j = 0 to j — 2 transition. 

to tic behavior (2.2b) by dividing through by an ap­
propriately determined constant. After two such func­
tions have been determined by the preceding method, 
the integrand of Eq. (2.4) is evaluated as a table of 
values, and the value of the $j'vJ*x integral computed 
by Simpson's numerical quadrature rule. The magnitude 
and phase of the 5-matrix element (2.3b) is now stored 
away for future use and the program continues on in its 
calculations of other ^-matrix elements. After all 
5-matrix elements for the desired rotational transition 
have been evaluated up to some given value of / = / m a x , 
the program computes the total cross section and the 
A L coefficients in the expansion of the differential scat­
tering cross section. Careful FAP coded subroutines 
were prepared for evaluating the Clebsch-Gordan, 
Racah, and Z coefficients needed. The value of / m a x is 
chosen so that the absolute magnitude of the 5-matrix 
elements has fallen off by a factor of 100 or 1000 when 
the final one is calculated. 

While it was not possible to test the program by doing 
an actual molecular inelastic scattering problem since 
there have been no previous calculations of this type in 
the literature nor any simple case that could be solved 
analytically, the program was checked out in every 
possible way. The radial differential equation integra­
tion process was checked by putting in a zero potential 
function, whereupon the program produced spherical 
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FIG. 3. Inelastic scattering of He by H2. Potential of Eq. (5.2). 
Differential scattering cross section in the center-of-mass system 
for the y=0 to j = 2 transition. 

Bessel functions. The potentials used by Bernstein10 in 
his elastic scattering calculations were inserted; his 
phase shift results were verified by the computer. The 
Simpson's rule subprogram used to evaluate the inte­
grals (2.4) was tried on several known integrals; the re­
sults were always correct. The subprograms for the 
Racah, Clebsch-Gordon, and Z coefficients were checked 
against existing tables. The part of the program that 
generates the fp(j"l"; flf; / ) coefficients, Eq. (3.3), was 
checked against the tables of Percival and Seaton.11 In 
these checks, as in others, the programs checked out 
perfectly. 

The time to compute a total inelastic cross section 
depends upon the value of J m a x required and the num­
ber of differential equations which must be numerically 
integrated for each value of / . In general, it requires 
about 15 to 25 sec to solve a differential equation, de­
pending upon how complicated the potential functions 
is to evaluate. For the transition j=0—>j—2 where 
four differential equations must be solved for each / 
value, it, therefore, requires around 1 to 1J min per / 
value. Since a typical value of / m a x is 20 or 25, it would 
take about 20 to 30 min to compute the total cross sec­
tion. The time to compute each AL coefficient depends 
upon the value of L as well as /max- For J m 9 X = 25, the 
A i coefficient can be evaluated in approximately one 
minute, while ten to fifteen minutes is not an uncommon 

where 

time for an A8 coefficient. For a total cross section and 
the AL coefficients up to L= 8, a typical time is 45 min 
to 1 h on the IBM 709 computer. 

V. SCATTERING OF He BY H2 

The interaction energy between a helium atom and a 
hydrogen molecule computed in the preceding paper12 

may now be used with the foregoing formalism to com­
pute the inelastic cross section for rotational transition 
when a helium atom and a hydrogen molecule collide. 
This potential is given by 

V (r ,7) = C*—[l+/?P2(cosT)] (5.1) 

C= 17.283 double R y = 470.10 eV, 

a= 2.027 (au)-1^3.830 A, (5.2) 

0=0.375. 

Since this potential contains only a vo(r) and a v^ir) 
term,13 the selection rule Aj=0, ± 2 will prevail.14 The 
case Ay=0, of course, corresponds to elastic scattering 
of the helium atom. 

Before examining the results of the calculations, it is 
good to get an idea of the size of the energy parameters 
involved in the problem. From the j=0 to j=2 state 
of the hydrogen molecule, there is an energy difference of 
0.0454 eV. The gap between the ground and first ex­
cited vibrational state is 0.3533 eV15; the first electroni­
cally excited state, of course, lies even higher. We must, 
therefore, restrict ourselves to energies lower than 
about 0.3 eV in order that our calculations have any 
meaning. Actually, we must restrict our incident kinetic 
energy to be even lower, since the partial wave analysis 
becomes too cumbersome and the distorted-wave ap­
proximation begins to fail at even lower energies. For 
these reasons, the author has chosen to study the transi­
tion j=Q to j=2 of parahydrogen. A similar calcula-

TABLE I. Inelastic scattering of He by H2. Transition 
/ = ( ) - » . /=2. Potential of Eq. (5.2). 

-Cane 
(eV) 

0.05 
0.06 
0.07124 
0.08 
0.09 
0.10 
0.15 

''max 

14 
17 
22 
26 
30 
35 
35 

|5°(20;00)| 

0.0596 
0.1244 
0.1861 
0.2294 
0.2749 
0.3169 
0.4917 

\SJ(2,J-2;0J)\ 
0.00001 
0.00033 
0.00015 
0.00006 
0.00002 
0.00001 
0.00098 

a(2 <- 0) 
(A2) 

0.0117 
0.0784 
0.2115 
0.3479 
0.5296 
0.7314 
1.8883 

10 R. B. Bernstein, J. Chem. Phys. 33, 795 (I960). 
1 1 1 . C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc. 

53, 654 (1957). 

12 C. S. Roberts, preceding paper, Phys. Rev. 131, 203 (1963). 
13 This terminology refers to the potential V(r,y) as expanded in 

Eq. (3.1). 
14 In reality, the potential V{r,y) will contain higher order terms 

than the ju = 2 term when expanded as in Eq. (3.1), but according 
to reference 12, these higher order terms should be much smaller. 
Therefore, the selection rule Aj = 0t ± 2 should be fairly well but 
not absolutely obeyed in experiment. 

15 W. Moore, Physical Chemistry (Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1955), p. 341. 
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TABLE II . He-H2 inelastic scattering. Transition j ' = 0 —> i = 2 . Potential of Eq. (5.2). AL coefficients in the 
expansion of the differential scattering cross section in the center-of-mass system. 

£inc (eV) 

0.05 
0.06 
0.07124 
0.08 
0.09 
0.10 
0.15 

AQ 

0.1190 
0.9605 
3.0759 
5.6817 
9.7296 

14.9305 
57.8182 

A1 

-0.1415 
-1.0296 
-2.9547 
-5.0822 
-8.1222 

-11.7501 
-37.2990 

A2 

0.0252 
0.0887 
0.0650 

-0.0608 
-0.3321 
-0.7466 
-4.6690 

Az 

0.0038 
0.0314 
0.0610 
0.0632 
0.0461 
0.0014 

-0.6847 

A, 

0.0026 
0.0237 
0.0592 
0.0777 
0.0695 
0.0503 

-0.4638 

A, 

-0.0024 
-0.0251 
-0.0839 
-0.1475 
-0.2423 
-0.3728 
-1.1769 

A, 

-0.0004 
0.0130 
0.0782 
0.1674 
0.3188 
0.5184 
1.8590 

A7 

0.0015 
0.0223 
0.0559 
0.0702 
0.0477 

-0.0109 
-0.8732 

A8 

0.0012 
-0.0036 
-0.0514 
-0.1144 
-0.1857 
-0.2561 

0.4761 

tion could have been made for the j—1 to j=3 transi­
tion of orthohydrogen, but this was not attempted at 
the present juncture. These two transitions are the pre­
dominant rotational transitions that would occur at 
temperatures of several hundred degrees Kelvin. 

The results of the scattering calculations with the 
potential (5.1) are shown in Table I. The incident 
energy given is measured in the center-of-mass system. 
The moment of inertia of the H2 molecule was taken to 
be15 0.459X10-40 g cm2. The number of / values that 
had to be taken before the values of the 5-matrix ele­
ments had become small enough to neglect is listed 
under /m a x . The absolute magnitude of the largest 
^-matrix element, 6,()(20;00), and the largest of the 
three matrix elements for / = / m a x are given so that one 
may see just how small the ^-matrix elements have 
become for this value of / . The total cross section for 
the excitation j = 0 to j = 2 is listed in square angstroms 
and plotted versus incident kinetic energy in Fig. 1. 

The value of the absolute magnitude of S°(20;00) 
can also furnish a check on how well the distorted-wave 

TABLE III . Scattering results. Transition 
i = 0 -» j=2. Potential of Eq. (5.7). 

.Einc 
(eV) 

0.05 
0.06 
0.07124 
0.08 
0.09 
0.10 
0.15 

/max 

13 
17 
22 
26 
30 
35 
35 

|S°(20;00)| 

0.0654 
0.1373 
0.2058 
0.2539 
0.3043 
0.3509 
0.5439 

|S ' (2 , / - 2 ; 0 / ) | 

0.00007 
0.00041 
0.00019 
0.00007 
0.00003 
0.00001 
0.00130 

<r(2^-0) 
(A2) 

0.0148 
0.1010 
0.2740 
0.4519 
0.6893 
0.9530 
2.4624 

approximation is working.16 Since the true S matrix is 
unitary, we must have 

E/'i- S'(jl;j'l')SJ(j'l';jiy= 1, (5.3) 

and since the S matrix is also symmetric, we have 

E y H W ; j W = l . (5.3a) 

Now, in the distorted-wave approximation the diagonal 
element SJ(jl;jl) has an absolute magnitude of 1. 
Therefore , E q . (5.3a) canno t be satisfied since t he non-

16 A. Dalgarno (private communication). 

diagonal elements are not all zero. In order to stay as 
close to the condition of Eq. (5.3a) as possible, we can 
set up a criterion that 

Zn*n\SJ(jl; fn\K<l, (5.4) 

or the distorted-wave approximation is surely not valid. 
Just how much less than one Eq. (5.4) should be is a 
matter of judgment. The distorted wave approximation 
is better as the summation (5.4) gets smaller, but, of 
course, the nondiagonal 5-matrix elements will get 
large if the probability of inelastic processes is appreci­
able. This all points out the well-known fact that the 
distorted-wave approximation works best when the 
nondiagonal matrix elements of the potential are small 
compared to the diagonal ones. One sees from Table I 

60 90 1HO 
0(C.M.) (DEGREES) 

FIG. 4. Inelastic scattering of He by H2. Potential of Eq. (5.2). 
Angular distribution of He atoms in the center-of-mass system 
after j=0 to j=2 transition. 
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TABLE IV. Inelastic scattering results. Transition ^ = 0 —» j — 2. Potential of Eq. (5.7). AL coefficients in the 
expansion of the differential scattering cross section in the center-of-mass system. 

£inc (eV) 

0.05 
0.06 
0.07124 
0.08 
0.09 
0.10 
0.15 

Ao 

0.1515 
1.2366 
3.9846 
7.3803 

12.6628 
19.4542 
75.3969 

Ax 

-0.1800 
-1.3213 
-3.8019 
-6.5393 

-10.4397 
-15.0787 
-47.3717 

A2 

0.0313 
0.1056 
0.0527 

-0.1384 
-0.5323 
-1.1199 
-6.5255 

A3 

0.0052 
0.0442 
0.0893 
0.0986 
0.0846 
0.0386 

-0.7182 

A, 

0.0037 
0.0332 
0.0806 
0.1026 
0.0848 
0.0463 

-0.7719 

As 

-0.0038 
-0.0391 
-0.1286 
-0.2246 
-0.3638 
-0.5503 
-1.5928 

A, 

-0.0007 
0.0200 
0.1182 
0.2525 
0.4773 
0.7715 
2.7352 

A7 

0.0022 
0.0322 
0.0766 
0.0894 
0.0436 

-0.0618 
-1.4148 

As 

0.0017 
-0.0074 
-0.0822 
-0.1782 
-0.2849 
-0.3844 

0.7808 

that for incident energy equal to 0.15 eV |S°(20; 00) |2 

is already up to 0.242. This prevents us from going to 
higher incident energies in our calculations. 

Table I I lists the values of the AL coefficients up to 
L= 8 in the expansion of the differential scattering cross 
section in the center-of-mass system. Although an ex­
amination of the expression for AL will show that AL 
must approach zero as L gets larger, L must be of the 
order of 2 / m a x before this condition is realized. If we 
were, therefore, to calculate the next few higher AL 

coefficients, we would find that they had about the same 
magnitude as A7 or Ag. I t is not necessary, though, to 
calculate any of these higher AL& if all one wants to 
know is the shape of the differential scattering cross 

section. The A 0, A1, and perhaps the A 2 coefficients are 
so much larger than the rest that the others make just 
very small perturbations to the shape of the curve. 
The differential scattering cross section versus angle of 
scattering measured in the center-of-mass system is 
plotted in Figs. 2 and 3. These curves were obtained by 
evaluating the series for AL up to L= 8. Another graph 
was tried taking L up to 11 and the two looked so much 
alike that one would be hard pressed to distinguish be­
tween them. Since the differential scattering cross sec­
tion is independent of 0, the azimuth al angle about the 
incident particle's direction, it is also useful to define the 
function 

^ O v ; i l ^ ) = 2 7 r s i n ^ ( / ; i | r ) . (5.5) 

I t is obvious that 

60 90 120 

0 ( C . M . ) (DEGREES) 

FIG. 5. Inelastic scattering of He by H2. Potential of Eq. (5.2). 
Angular distribution of He atoms in the center-of-mass system 
after j—0 to j=2 transition. 

Jo 
>n(j';j\o)=<r(f;j)- (5.6) 

The height of Q,(f \ j\0) is proportional to the number 
of helium atoms scattered between 0 and 6+dd. The 
function £2(2;O|0) is plotted for the various runs in 
Figs. 4 and 5. 

The curves in Figs. 1 through 5 show several interest­
ing features. The graph of the total cross section versus 
energy goes to zero as it should at the threshold of the 
excitation, 0.0454 eV. I t begins to rise very slowly, and 
then begins increasing in a rapid, almost linear manner. 
The differential scattering cross sections all have about 
the same shape except for a few wiggles here and there. 
All have maxima at 0= 180° corresponding to back scat­
tering in the center of mass or scattering at large angles 
in the laboratory system. This property seems to be 
characteristic of inelastic scattering processes in general, 
while elastic differential cross sections generally have 
their maxima at 6 less than 90 deg. The graphs of 
0 (2 ; 0 J 6) in Figs. 4 and 5 are peaked around 118° show­
ing again the high angle preference of the inelastic 
process. 

Calculations were also made for the scattering from 
a hydrogen molecule with a slightly elongated bond 
length of 1.486 a.u. The interaction energy at this bond 
length is also calculated in reference 12; it is represented 
by the function of Eq. (5.1) with the parameters 
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TABLE V. H2-H2 inelastic scattering. Transition j=0 —> j — 2. Potential of Eq. (6.1). 

£out (eV) 

0.00462 
0.0146 
0.0259 
0.0346 
0.0446 
0.0546 
0.1046 
0.1546 
0.2046 

£inc (eV) 

0.05 
0.06 
0.07124 
0.08 
0.09 
0.10 
0.15 
0.20 
0.25 

•'max 

12 
17 
19 
20 
22 
22 
28 
30 
32 

|S°(20;00)|a 

0.0399 
0.0561 
0.0713 
0.0817 
0.0923 
0.1020 
0.1413 
0.1720 
0.1979 

|S'(2,/-2;(tf)lb 

0.00005 
0.00004 
0.00022 
0.00056 
0.00057 
0.00181 
0.00236 
0.00681 
0.01121 

<r(0<-2) (A2)° 

0.0159 
0.0163 
0.0200 
0.0233 
0.0269 
0.0304 
0.0466 
0.0606 
0.0733 

<r(2«-0) (A2)d 

0.00735 
0.0198 
0.0364 
0.0503 
0.0667 
0.0831 
0.1624 
0.2343 
0.2998 

a Magnitude of largest S-matrix element calculated. 
b Magnitude of last S-matrix element considered. All elements with 

/ >/max were neglected. 

0 For incident kinetic energy in the center-of-mass system =£out. 
d For incident kinetic energy in the center-of-mass system =£in c . 

changed to 

C = 16.666 double R y = 453.3 eV, 

a= 2.009 a . u . - ^ 3.796 A"1, 

P= 0.425. 

(5.7) 

While this potential has little relation to a physical 
situation, it will serve to show the behavior of the scat­
tering results as the parameters are changed from those 
of (5.2). The results for the inelastic scattering using the 
above parameters are given in Tables I I I and IV. 

The main difference in the potentials described by 
(5.2) and (5.7) is in the value of j3. In one case 0 = 0.375 
and in the other it is 0.425. I t should be pointed out that 
the total cross sections in Table I I I are very nearly 
equal to (0.425/0.375)2= 1.284 times the corresponding 
total cross section in Table I. This demonstrates that 
the total cross section is approximately proportional to 
the square of the ratio z^MAoM when vo(r) is kept 
constant. One can see that this should be so by realizing 
that due to the selection rules for the f»(j"l"; j'V; / ) co­
efficients only the i>2(f) term enters into the nondiagonal 
matrix elements of the potential ( / / ' ; J \ V \ j"l"; J). 
Since by Eqs. (2.3b) and (2.4) SJ(2V; 0/) is proportional 
to (01; J | V12V; / ) and the total cross section is pro­
portional to the squares of these S-matrix elements 
the total cross section will be proportional to the square 
of the magnitude of v2(r), vo(r) kept constant. The only 
other place that ^ ( r ) enters into the formalism is in the 
diagonal matrix elements of the potential. Such ele­
ments provide the distortion in the differential equations 
(2.1). The fact that the total cross section is so nearly 
proportional to the square of vz(r) means that its effect 
in providing distortion is overwhelmed by its role in the 
integral of Eq. (2.4). 

At this point, one might well question the validity of 
using either of the potentials (5.2) or (5.7) to represent 
the potential between a helium atom and a hydrogen 
molecule. Due to the simplicity of the wave function 
that was set up to calculate the interaction potential,12 

the calculated interaction energy remained repulsive 
throughout the entire region of investigation. However, 
it is a well-known fact that at large separations the pair 
must exhibit a Van der Waals type attraction. Such 

an attraction is provided by the ( l / r ) 6 term in the 
Amdur-Malinauskas experimental potential, Eq. (4.5) 
of reference 12. Despite this term, we can see from Fig. 
3, reference 12, that all three potentials, the Amdur-
Malinauskas experimental exp-6 and simple exp and 
the calculated vo(r)} lie very close to one another in the 
region of 4 to 6 a.u. For the incident kinetic energies 
studied in this investigation, the classical turning point 
lies in this region. This is defined to be the point at which 
the interaction energy equals the incident kinetic energy. 
I t is at this point that the two colliding partners would 
bounce off one another if they obeyed classical me­
chanics. In order to investigate how a change in the 
interaction energy outside of this region, especially the 
addition of a Van der Waals attraction term, would 
affect the scattering results, two new potentials were 

0.10 0.15 0.20 

ElNC ( C M . ) (eV) 

FIG. 6. Inelastic scattering of H2 by H2. Potential of Eq. (6.1). 
Total inelastic cross section for the de-excitation j = 2 to ,; = 0 vs 
incident kinetic energy. 
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TABLE VI. H2-H2 inelastic scattering. Transition j—0 —•> j—2. Potential of Eq. (6.1). AL coefficients in the 
expansion of the differential scattering cross section in the center-of-mass system. 

£inc (eV) 

0.05 
0.06 
0.07124 
0.08 
0.09 
0.10 
0.15 
0.20 
0.25 

AQ 

0.0564 
0.1821 
0.3982 
0.6180 
0.9211 
1.2754 
3.7396 
7.1920 

11.5004 

Ax 

-0.0218 
-0.1083 
-0.2322 
-0.3459 
-0.4919 
-0.6527 
-1.6628 
-2.9805 
-4.5795 

A2 

0.0065 
0.0014 

-0.0052 
-0.0117 
-0.0202 
-0.0304 
-0.0978 
-0.2284 
-0.4585 

A3 

0.0077 
0.0074 
0.0108 
0.0147 
0.0204 
0.0257 
0.0688 
0.0758 
0.0103 

A4 

0.0079 
0.0104 
0.0179 
0.0259 
0.0378 
0.0481 
0.1327 
0.1676 
0.1044 

A, 

0.0077 
0.0086 
0.0146 
0.0214 
0.0322 
0.0400 
0.1162 
0.1243 
0.0213 

A, 

0.0059 
0.0091 
0.0183 
0.0285 
0.0447 
0.0559 
0.1727 
0.1930 
0.1016 

A7 

0.0065 
0.0096 
0.0195 
0.0292 
0.0442 
0.0514 
0.1445 
0.1012 

-0.0648 

As 

0.0040 
0.0081 
0.0153 
0.0223 
0.0333 
0.0402 
0.1246 
0.1107 
0.0402 

invented. I t was decided to keep the value /3=0.375 so 
that 

v2(r) = O.375v0(r), (5.8) 

and to use the experimental exp-6 and simple exp po­
tentials of Eqs. (4.5) and (4.6) of reference 12 for vo(r). 
The total cross section at 0.09 eV incident kinetic energy 
was then calculated for these two new potentials and 
the results compared with that obtained from potential 
(5.2). For the exp-6 taken as vo(r) a total inelastic 
cross section of 0.563 A2 was calculated, while for the 
simple exp potential the cross section was 0.449 A2. 
From Table I we see that the corresponding total cross 
section obtained with the theoretically calculated inter­
action energy was 0.530 A2. That these three values are 
so close together points up the fact that the scattering 
results are fairly insensitive to the behavior of the po­
tential away from the region of the classical turning 
point. The mathematical manifestation of this comes 
through the $j>vJil integral defined in Eq. (2.4). When 
the integrands of several of these integrals were ex­
amined, it was found that they were peaked in the region 
of the classical turning point. When the integral is 
evaluated, little contribution comes from outside this 
region. In addition to this, the depth of the minimum 
of the Amdur-Malinauskas potential is only about 0.001 
eV, while at least 0.045 eV of incident kinetic energy 
are needed to induce a rotational transition. Thus, the 
depth of the minimum is about fifty times smaller than 
the relevant energies in the problem and, therefore, can 
do little to effect any results. 

I t would be pleasing at this point to compare our re­
sults with some experimental evidence or a previous 
calculation. Unfortunately, there has never been, to 
the author's knowledge, any experimental measurement 
of the inelastic cross section for rotational excitation or 
de-excitation upon collision between a helium atom and 
a hydrogen molecule. Neither has there been, to the 
author's knowledge, any other theoretical treatment of 
the subject. Such comparisons will have to be delayed 
until other workers find it in their interest to examine 
this problem. 

VI. SCATTERING OF H2 BY H2 

The digital computer program already developed was 
used to compute the cross section for rotational de-

excitation from the j~2 to the j=0 state in a collision 
between two hydrogen molecules. Actually, the com­
puter calculated the excitation cross section from j=0 
to j= 2, and then the law of detailed balance was used 
to obtain the cross section for the inverse process. While 
scattering of H2 by H2 is, in reality, scattering of a rotor 
by a rotor and not scattering of a particle by a rotor, it 
can be shown that the theory for the former process re­
duces to the theory of the latter if the distorted wave 
approximation is applied and both rotors are initially 
in the 7 = 0 state.16 Under these conditions, V(r,y) 
should be the potential between two hydrogen molecules 
averaged over all spacial orientations of one of the 
molecules. Takayanagi6 has derived such an averaged 
potential from the work of Evett and Margenau17 on 
the H 2 -H 2 interaction. His result is 

where 
V (r,y) = vo (r)+v2 (r)P2 (COSY) , (6.1a) 

v0(r) = Dle~2^r-r^-2e-a(-r-r^'], (6. lb) 

v2(r)=(3De-2^r-r<>\ (6.1c) 

£>=1.1X10-4 double R y = 2.992X10~3 eV, 

r 0 = 6.4 a.u. = 3.387 A, 

2a -1 .87 (a.u.)~1=3.534A-1 , 

£=0.075. 

There is some doubt in the author's mind concerning 
the accuracy of the above potential, especially the value 
of 0 given, but since an analysis of the existing knowl­
edge of the H2-H2 interaction was not amenable to pro­
ducing a more satisfactory result it was decided to com­
pute cross sections using the above. The results for the 
total cross section are shown in Table V while Table VI 
lists the corresponding AL coefficients in the expansion 
of the differential scattering cross section. Since the 
total de-excitation cross section from j=2 to j=0 is of 
interest in ultrasonic dispersion measurements in H 2 

gas,18 it was decided to graph it rather than the cor­
responding excitation cross section. The resulting curve 
is shown in Fig. 6. These results are in substantial agree-

17 A. A. Evett and H. Margenau, Phys. Rev. 90, 1021 (1953). 
18 K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion 

of Ultrasonic Waves (Academic Press Inc., New York, 1959). 
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ment with the distorted-wave calculation of Davison19 

who used the same potential as that given in Eq. (6.1). 
Davison, however, took proper account of the identity 
of the two hydrogen molecules while in the present re­
search a distinction is made between the incident and 
target hydrogen molecules. For this reason, the cross 
sections could not be expected to agree exactly. 

We can now compute the probability for rotational 
de-excitation from the j = 2 state upon collision in H2 
gas and compare this with the value determined by 
ultrasonic dispersion measurements.20 This probability 
for rotational de-excitation can be obtained from the 
following expression. 

P2o=er(0 <- 2)Akill(0 <- 0) (6.2) 

where <rkin(0 <— 0) is the elastic scattering cross section 
between H2 molecules as measured in kinetic theory 
experiments. According to reference 20 <7kin(0<— 0) 
= 23.2 A2 in H2 gas. To be strictly correct, we should 
average the curve in Fig. 6 over a Maxwell-Boltzmann 
distribution of incident energies before dividing by 
<ridn(0<— 0), but to simplify matters we forego the 
averaging procedure and use the value of cr(0<— 2) at 
Einc=kT. For r=300°K, kT= 0.0259 eV, and <r(0<- 2) 
at Einc^ 0.0259 eV is seen to have the value 0.020 from 

19 W. D. Davison, Discussions Faraday Soc. 33, 71 (1962). 
20 R. Brout, J. Chem. Phys. 22, 938 (1954). 

A COLD electron plasma is known to exhibit electro­
static oscillations with the characteristic plasma 

frequency o)=cap. These oscillations are longitudinal, 
with the particle motion and electric field both parallel 
to the wave vector k. The phase velocity vp=up/k can 
take on any value; in fact, it can exceed the speed of 
light in vacuum if the wave number is small enough: 
k<o)p/c. 

* Work supported by the U. S. Atomic Energy Commission. 
t National Science Foundation Cooperative Fellow. 

Table V. Therefore, 

forr=300°K, P2o~0.020/23.2, ( . 
^0.86X10-3. (0'6) 

The experimental value for P20 as given in reference 20 
is 

for T=300°K, P20=3.0X10-3 (experimental). (6.4) 

The fact that the computed de-excitation probability is 
low may be due to the fact that we have not considered 
processes where both molecules come together in the 
j=2 state and one is de-excited to the ^'=0 state while 
the other is excited to the j= 4 state, or to the fact that 
the value of /3 in the potential (6.1c) is too small. Since 
the inelastic cross section goes approximately as (32, a 
value of 0=0.14 will produce the correct answer. This 
is in exact agreement with the conclusion reached by 
Davison19 in his calculation. Since it is not clear that 
Eq. (6.1) does indeed represent the correct potential 
to use for the averaged H2-H2 interaction potential, 
it is not unreasonable to surmise that perhaps 0 should 
actually be made larger. 

ACKNOWLEDGMENTS 

The numerical computations were done on the IBM 
709 at the MIT Cooperative Computing Laboratory, 
and the author wishes to thank the staff of that organi­
zation. 

This electrostatic plasma wave consists macroscopi-
cally of a sinusoidal spatial variation of space charge 
traveling with the velocity vp. This is, of course, brought 
about by electrons exhibiting small oscillations about 
their equilibrium positions with their phases properly 
adjusted to give the above described macroscopic space 
charge wave. 

In an infinite uniform plasma, longitudinal plasma 
oscillations have the interesting property that the con­
duction and displacement currents cancel exactly. 
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Cerenkov-Like Radiation by Plasma Oscillations* 

G. SCHMIDT AND G. HALPERNf 

Stevens Institute of Technology, Hoboken, New Jersey 
(Received 20 February 1963) 

A coupling mechanism is shown to exist between electrostatic oscillations along a plasma cylinder and 
transverse electromagnetic waves outside, resulting in radiation by phase oscillations. Plasma oscillations 
along the cylinder can be decomposed into traveling waves with plasma velocity vp=co/k. The macroscopic 
appearance of such a traveling wave is the same as if a series of alternating positive and negative charged 
bunches move with the phase velocity of the wave. For long wavelengths, where the phase velocity exceeds 
the speed of light in the surrounding medium, radiation takes place, having a pattern as expected from 
Cerenkov radiation of the charged bunches moving with vp. Since for plasma oscillations co/k>c modes 
exist (Dawson and Oberman), this radiation can also take place in vacuum. 


